The study explores spatial data processing methods and the associated impact on the characterization and quantification of a combined health risk indicator at a regional scale and at fine resolution. To illustrate the methodology of combining multiple publicly available data sources, we present a case study of the Lorraine region (France), where regional stakeholders were involved in the global procedures for data collection and organization. Different indicators are developed by combining technical approaches for assessing and characterizing human health exposure to chemical substances (in soil, air and water) and noise risk factors. The results permit identification of pollutant sources, determinants of exposure, and potential hotspot areas. A test of the model’s assumptions to changes in sub-indicator spatial distribution showed the impact of data transformation on identifying more impacted areas. Cumulative risk assessment permits the combination of quantitative and qualitative evaluation of health risks by including stakeholders in the decision process, helping to define a subjective conceptual analysis framework or assumptions when uncertainties or knowledge gaps operate.
http://ift.tt/2lKw6U3
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου