Τρίτη 29 Αυγούστου 2017

IJERPH, Vol. 14, Pages 977: Bioaccessibility and Human Exposure Assessment of Cadmium and Arsenic in Pakchoi Genotypes Grown in Co-Contaminated Soils

IJERPH, Vol. 14, Pages 977: Bioaccessibility and Human Exposure Assessment of Cadmium and Arsenic in Pakchoi Genotypes Grown in Co-Contaminated Soils

International Journal of Environmental Research and Public Health doi: 10.3390/ijerph14090977

Authors: Yanyan Wei Xiaoman Zheng Md. Shohag Minghua Gu

In many countries cadmium (Cd) and arsenic (As) commonly coexist in soils contaminated by mining activities, and can easily enter the human body via consumption of leafy vegetables, like the popularly consumed pakchoi (Brassica chinensis L.), causing major health concerns. In the present study, bioaccessibility and human exposure of Cd and As were assessed in twenty genotypes of pakchoi cultured at two different levels of co-contamination to identify low health risk genotypes. The bioaccessibilities of Cd and As represent a fraction of the total metals content could be bioaccessible for human, in the present study, significant differences in pakchoi Cd and As bioaccessibility were observed among all tested genotypes and co-contaminated levels. Cd and As bioaccessibility of pakchoi were in the ranges of 24.0–87.6% and 20.1–82.5%, respectively, for in the high level co-contaminated soils, which was significantly higher than for low level co-contaminated soils with 7.9–71.8% for Cd bioaccessibility and 16.1–59.0% for As bioaccessibility. The values of bioaccessible established daily intakes (BEDI) and the total bioaccessible target hazard quotients (TBTHQ) of Cd and As were also considerably higher in high level co-contaminated soils than in low level co-contaminated soils. Two genotypes (Meiguanqinggengcai and Zhenqing60F1) contained relatively low concentrations and bioaccessible Cd and As and, their BEDI and TBTHQ for Cd and As ranged below the tolerable limits set by the FAO/WHO (BEDI of Cd < 0.83 μg kg−1 bw day−1, BEDI of As < 3 μg kg−1 bw day−1) and United States Environmental Protection Agency (TBTHQ for Cd and As < 1), this applied for both levels of co-contaminated soils for adults and children. Consequently, these findings suggest identification of safe genotypes in leafy vegetable with low health risk via genotypic screening and breeding methods could be a useful strategy to ensure the safety of food crops grown in those Cd and As co-contaminated fields due to mining activities.



http://ift.tt/2xub4LP

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου