IJERPH, Vol. 15, Pages 1654: Fabrication of Surfactant-Enhanced Metal Oxides Catalyst for Catalytic Ozonation Ammonia in Water
International Journal of Environmental Research and Public Health doi: 10.3390/ijerph15081654
Authors: Yunnen Chen Lin Guo Chang Li
The new surfactant-enhanced metal oxides composite catalysts have been prepared using solid state method and characterized by the N2-adsorption-desorption, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM), and X-ray diffraction (XRD) techniques. Catalytic activity of the synthesized powders has been investigated in the liquid-phase catalytic ozonation ammonia nitrogen (NH4+) (50 mg/L). Especially, the effect of parameters such as optimum molar ratio for metal salt, NaOH and surfactants, temperature, and time of calcinations was also considered. Leveraging both high catalytic activity in NH4+degradation and more harmless selectivity for gaseous nitrogen, the CTAB/NiO catalyst is the best among 24 tested catalysts, which was generated by calcining NiCl2·6H2O, NaOH, and CTAB under the molar ratio 1:2.1:0.155 at 300 °C for 2 h. With CTAB/NiO, NH4+ removal rate was 95.93% and gaseous nitrogen selectivity was 80.98%, under the conditions of a pH of 9, ozone flow of 12 mg/min, dosage of catalyst 1.0 g/L, reaction time 120 min, and magnetic stirring speed 600 r/min in room temperature.
https://ift.tt/2vxb0KX
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου